Звезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активнаЗвезда не активна
 

Технология культивирования хлореллы

Хлорелла – одноклеточная водоросль, широко распространенная в природе. Для массового культивирования применяют в основном Clorella vulgaris, Clorella purenoidosa.

Хлорелла относится к числу просто организованных одноклеточных зеленых водорослей.

Клетки мелкие – от 2 до 10 мкм. Размножение бесполое. При благоприятных условиях новые клетки из материнской образуются через 6–8 часов и водоросль может создавать большую биомассу, богатую различными питательными веществами. Хлорелла содержит около 50 % белка, хотя его количество может варьировать в зависимости от условий культивирования и в первую очередь от освещения и состава питательной среды. Жира содержится от 7 до 20 %, углеводов (в основном за счет гемицеллюлозы и крахмала) – до 20 %, золы – до 12 %. В состав клеток входят 23 аминокислоты. Особенно много в клетках хлореллы витаминов группы В, С, РР, Е, Д, а также каротина.

Хлорелла – типичный фотоавтотроф, развивающийся только при естественном или искусственном освещении на жидкой минеральной питательной среде, содержащей азот, фосфор, серу, железо, магний и другие макрои микроэлементы, при постоянной подаче углекислого газа и отводе образующегося кислорода.

Необходимым условием является поддержание температурного режима и величины рН питательной среды. В зависимости от температуры штаммы хлореллы делят на термофильные, мезофильные и криофильные. Для термофильных оптимальная температура выращивания составляет 35–37 оС, для мезофильных – 25–27 оС, для криофильных – 10–15 оС.

Величина рН в процессе культивирования должна поддерживаться в диапазоне 5,5–6,5. Коррекция производится фосфорной и азотной кислотой при повышении рН, раствором гидрата окиси калия при понижении рН.

Так как углекислый газ является основным, а иногда и единственным поставщиком углерода, то интенсивно хлорелла может развиваться только при достаточном для этого процесса количестве углекислого газа, растворенного в питательной среде.

Мелкие промышленные установки и лабораторные культиваторы обычно используют баллонный углекислый газ, который подается в виде смеси с воздухом при содержании 2–5 % углекислоты или в чистом виде. Также одним из важнейших факторов процесса культивирования хлореллы является световой фактор. Только в условиях освещения в хлорелле из неорганических веществ, углекислоты, воды, минеральных компонентов синтезируются белки, жиры, витамины и углеводы.

Для выращивания хлореллы можно использовать прудовую воду, воду ручьев и колодцев. Наиболее пригодной является колодезная вода, так как в ней содержится достаточно растворимых микроэлементов и очень мало микроорганизмов. Водопроводную воду использовать нежелательно, так как в ней много хлора.

Хлореллу можно выращивать как на минеральных средах, так и на средах естественных органических удобрений, можно использовать отходы животноводческих и птицеводческих комплексов, а также бытовые и промышленные сточные воды.

Для культивирования водорослей существует много питательных сред, основными элементами которых являются N, P, S, Mq, Fe. Независимо от применяемой среды особое внимание при выращивании водорослей должно быть обращено на азотное и фосфорное питание.

Питательные среды, предназначенные для автотрофного культивирования микроводорослей, представляют собой комбинации растворов солей и содержат необходимые для нормального развития элементы.

Наряду с неорганическими солями, в качестве источника азота используются мочевина, а также добавки биологически активных веществ.

Оптимальной считают среду, химический состав которой наиболее полно удовлетворяет физиологические потребности культуры. Основное требование, предъявляемое к среде заключается в том, чтобы концентрация питательных элементов в результате не лимитировала скорость биосинтеза клеток.

Различные систематические группы микроводорослей имеют неодинаковый биохимический состав, что отражается и на потребности различных водорослей в макрои микроэлементах. Достаточное обеспечение водорослей биогенами является обязательным условием успешного ведения процесса культивирования. От условий минерального питания зависит как интенсивность роста, так и направленность биосинтеза культуры.

Для обеспечения роста и нормального химического состава микроводорослей требуется наличие в среде в доступной форме 10–20 минеральных элементов (количество необходимых элементов варьирует в зависимости от вида водорослей). Питательные элементы делятся на макро(они используются клеткой прямо или косвенно в качестве основного строительного материала) и микроэлементы (они входят в состав ферментов, пигментов и необходимы для осуществления некоторых процессов в клетке).

Элементы N, P, Mg, K, S, Fe, Cu, Ca, Mn и Mo являются необходимыми для всех водорослей. Для некоторых видов водорослей К и Са могут быть заменены на Na и Mg.

Исследование потребности хлореллы в элементах питания на средах, сбалансированных по макрои микроэлементам, показало, что на 1 кг сухой биомассы водорослей приходится 90–100 г N, 8–10 г К, 6– 8 г Р, 4–5 г Мg, 5–6 г S, 300–400 мг Fe, 30–50 мг Мn, 3–5 мг Сu, 15–30 мг Zn, 0,4–0,5 мг Мо. Эти данные можно использовать для расчета потребности хлореллы в элементах питания на сбалансированных питательных средах.

По соотношению катионов и анионов, пропорции элементов и близости к элементарному составу клеток культивируемых микроводорослей различают несбалансированные и сбалансированные среды.

Примером несбалансированной среды служит среда Тамия, в которой в качестве источника азота используется нитрат калия. Поскольку для синтеза своей биомассы микроводорослей требуется азота намного больше, чем других элементов, то от источника азота зависит в большей степени изменение рН питательного раствора. Причина дисбаланса среды Тамия заключается в начальном избытке ионов калия, который усиливается в процессе культивирования. Поскольку нитрат калия – щелочная соль, выращивание микроводорослей на среде Тамия сопровождается повышением рН раствора, накоплением в нем карбонатных и бикарбонатных ионов. Повышение рН приводит к выпадению в осадок Р и Мg, т. е. культивирование на среде Тамия приводит к значительному изменению начального соотношения ионов, дефициту одних элементов и избытку других. По мере снятия части урожая биомассы и добавления в фоновый раствор новых порций среды этот дисбаланс усиливается, что при длительном культивировании приводит к значительному угнетению роста водорослей.

К сбалансированным средам относится сбалансированная среда No 3. Она обеспечивает интенсивный рост хлореллы без существенных изменений рН питательного раствора. Все макроэлементы используются более или менее одновременно.

Самыми распространенными являются следующие среды Кнопа, Пратта, Тамия, Майерса, ЛГУ, Ягужинского, сбалансированная No 3 (табл. 1).

 Таблица 1. Рецепты питательных сред для водорослей, гл

Хлореллу можно культивировать как под открытым небом, так и в помещениях. Для массового культивирования хлореллы под открытым небом могут быть использованы установки самой различной формы и размеров. Для их изготовления пригодны различные материалы кирпич, бетон, дерево, органическое стекло и др.

Таким образом, существуют культиваторы открытого и закрытого типа (рис. 1). Открытые – это установки, в которых суспензия водорослей не изолирована от атмосферы. Они дешевы в изготовлении, просты в конструкции, но при их использовании трудно следить за оптимизацией и стабилизацией факторов роста водорослей, культура легко заряжается, и получается суспензия с низкой плотностью.

Конструкции культиваторов закрытого типа обеспечивают возможность направленного регулирования параметров выращивания, что открывает перспективу резкого повышения урожая с единицы объема при более экономном расходовании химикатов и углекислого газа, увеличения плотности суспензии, улучшения ее качества вне зависимости от внешних условий.

Конструкции культиваторов для микроводорослей разнообразны, но в общей схеме содержат следующие основные функциональные системы и блоки 1) реактор; 2) системы освещения, питания культуры, газообмена, термостабилизации, перемешивания культуры, отбора урожая, контроля и управления;

3) вспомогательное оборудование. Реактор представляет собой резервуар, в котором происходят рост и размножение культуры микроводорослей. Наибольшее распространение на производстве получили реакторы в виде плоскопараллельных кювет, стеклотрубчатых систем, разнообразные горизонтальные бассейны и пр.

Система освещения включает источник света и устройства для его распределения и отражения.

Система питания предназначена для поддержания концентрации растворенных в воде питательных веществ в пределах, не вызывающих лимитирование или ингибирование роста микроводорослей.

Система состоит из емкостей для питательной среды и дозаторов, обеспечивающих добавление в реактор определенного объема питательной среды при одновременном отборе такого же объема культуры.

  Устройства для культивирования микроводорослей а – культиватор ЛГУ 1 – корпус; 2 – неполная срединная перегородка; 3 – насос;

Рис. 1. Устройства для культивирования микроводорослей а – культиватор ЛГУ 1 – корпус; 2 – неполная срединная перегородка; 3 – насос;

б – культиватор ВНИИПРХ-64 1 – дисковая перегородка; 2 – кольцевая перегородка; 3 – газовый колпак; 4 – насос;

в – культиватор ВНИИбиотехники 1 – корпус; 2 – насос; 3 – нагревательная труба; 4 – теплообменники; 5 – сточный конус; 6 – насадка;

г – японский культиватор 1 – круглый бассейн; 2 – вращающиеся перфорированные трубки; 3 – насос

 

Система газообмена включает источник углекислого газа (газобаллоны, топливные газы, биологические объекты), компрессор, расходомеры, магистрали движения газовоздушной смеси.

Система термостабилизации предназначена для поддержания температуры суспензии микроводорослей в оптимальных пределах.

Система перемешивания предназначена для улучшения питания и дыхания клеток суспензии микроводорослей, создания более равномерного облучения клеток светом, уменьшения оседания на поверхность реактора.

Производство микроводорослей включает ряд операций 1) подготовка питательной среды; 2) приготовление инокулянта; 3) зарядка и запуск культиватора; 4) культивирование и выдача готовой продукции; 5) регулярная чистка и обеззараживание технологического оборудования.

В настоящее время разработано большое количество культиваторов для интенсивного выращивания микроводорослей. Специалистами ЛГУ предложена недорогая установка для массового культивирования микроводорослей, представляющая собой прямоугольный каркас, выстланный полиэтиленовой пленкой и не полностью перегороженный посредине для создания циркуляции. Перемешиваение суспензии осуществляется насосом, расположенным в одной из половинок культиватора, что обеспечивает непрерывную циркуляцию суспензии. Подача углекислого газа производится из баллона непосредственно под двигатель.

В лабораторных условиях для культивирования микроводорослей применяется и культиватор закрытого типа. Установка состоит из двух плоскопарных кювет объемом 8 л каждая, между ними помещен светильник. Культура постоянно перемешивается воздухом, который подают со скоростью 2,5 лмин на 1 л культуры. Один раз в сутки культуру сливают и доливают свежую питательную среду, а 2–3 раза в сутки в культиватор вносят мочевину из расчета 0,25 гл. Ежесуточная продуктивность культуры при таком режиме составляет 8 г сухой или 24 г сырой биомассы с 1 л среды.

Урожайность водорослей колеблется в широких пределах – от 2 до 20 г сухого вещества на 1 м2 в сутки.

В рыбоводстве на суспензии хлореллы выращивают многих беспозвоночных, которые в дальнейшем используются для кормления рыб.